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Abstract. We discuss the transmission of electromagnetic radiation through a Fabry–Pérot
resonator in the microwave or far-infrared frequency ranges where the magneto-optic properties
are governed by a gyromagnetic permeability tensor. We restrict our attention to normally
incident radiation but consider both Faraday (magnetic field normal to plate) and Voigt (field
parallel to plate) geometries for ferromagnets and antiferromagnets. The effect of partially
reflecting mirrors is included. It is shown that provided one uses the polarization eigenmodes,
circular for Faraday geometry and plane for Voigt geometry, the transmission and reflection
can be expressed by general formulae in terms of single-interface reflection and transmission
coefficients. The resonator can be regarded as a magnetic-field tunable polarizer and it is shown
how inclusion of mirrors sharpens the properties.

1. Introduction

This paper is concerned with an optical problem that can be simply stated: we consider
transmission of normally incident electromagnetic radiation through a Fabry–Pérot etalon
made of a magnetic material. We investigate the way in which resonances in the magnetic
permeabilityµ(ω) affect the transmission spectrum and the relevant frequency range is
therefore microwave for ferromagnets and far infrared for antiferromagnets. Here we
consider the linear régime without exchange and in a subsequent paper [1] exchange is
included.

The early work on ferromagnetic resonance (FMR) [2] was mainly concerned with
metals in which the metallic conductivityσ results in a short skin depthδ. The effective
wave numberk ∼ 1/δ is therefore large enough for exchange effects, represented in lowest
order by a termDk2 in the equations of motion, to come into play. Typical measurements
are of the field dependence of absorption at a fixed microwave frequency; the absorption
shows a strong peak at the peak of Im(µ), the imaginary part of the rf permeability. In recent
years, FMR has been applied to detailed study of exchange constants in layered systems
[3] but it is not necessary to review this work here. In the present work we discuss only
insulators so that exchange effects arise only whenk ∼ 1/L, L being the layer thickness,
is sufficiently large.

The formalism to be presented here applies equally to antiferromagnets and we therefore
briefly mention relevant papers on antiferromagnetic resonance (AFMR) and related topics;
a full review has been given recently [4]. Early work [5, 6] was concerned with the
position, in frequency or field, of the AFMR line. More recently, attention has been focused
on optical properties associated with the antiferromagnetic resonance; the theory involves
application of Maxwell’s equations with the relevant expression forµ(ω). Sanderset al
[7] studied transmission of far-infrared (FIR) radiation from a number of molecular laser
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sources through discs of FeF2. It may be noted in particular that their experimental and
theoretical results for the field dependence of the transmission of 1.36 THz radiation through
a 786µm Mn2+ doped FeF2 disc show resonance features and Fabry–Pérot fringes of the
type to be discussed here. In a later paper [8] concerned with the field dependence of
microwave transmission through thin (0.23 and 0.98 µm) epitaxial MnF2 films the same
group was able to show standing-spin wave fringes arising from an exchange (Dk2) term.

The Fabry-Ṕerot interferometer is a basic optical device that is discussed in all optics
texts. The incorporation of partially reflecting mirrors, however, means that its properties
are far from simple. We believe that it is worthwhile to study the properties of a magnetic
Fabry–Ṕerot interferometer particularly since either or both exchange and nonlinear effects
may lead to observable effects in the transmission. We discuss here the linear theory
without exchange, which is dealt with in a subsequent paper [1]. In view of the ability
of a magnetic medium to modify the polarization of transmitted light, this paper may be
regarded as complementary to theoretical studies [9–12] that have appeared on the linear
response of a Fabry–Pérot interferometer in which the dielectric medium is optically active.

We should comment briefly on experimental techniques. Ferromagnetic resonances are
located in the microwave region where sources are of fixed frequency and spectra are
naturally presented as magnetic-field scans. Antiferromagnetic resonances are at higher
frequencies, say sub-millimetre to FIR, examples being the resonances in MnF2 at 8 cm−1

(240 GHz) and in FeF2 at 52 cm−1 (1.56 THz). Intense single-frequency sources are
available at the lower end of this range and studies of MnF2 often involve field scans at
fixed frequency. However, modern FIR Fourier-transform spectrometers are able to produce
frequency-scan spectra down to about 10 cm−1 with dielectric beam splitters or about 2 cm−1

with wire-grid beam splitters [13]. As reviewed elsewhere [4], starting with the work of
Häussleret al [14, 15] on FeF2 and CoF2, a substantial number of frequency-scanned spectra
have been published with resolution now down to about 0.02 cm−1 [16].

The formalism is developed in section 2 in which the transmission of the Fabry–Pérot
interferometer is expressed in terms of the transmission and reflection coefficients of a single
interface [17]. The results are illustrated numerically in section 3 for the ferromagnetic and
antiferromagnetic insulators YIG and FeF2 in the Faraday geometry (normal field) with brief
comments on the Voigt geometry (parallel field) and conclusions are presented in section 4.
A brief preliminary account of the part of this work that deals with the ferromagnet in the
Faraday geometry without mirrors has been given previously [18].

2. Theory

The interferometer, axes and notation to be used are defined in figure 1. Electromagnetic
radiation (microwave or infrared) is incident normally on a magnetic film of thickness
L characterized, in this work, by a gyromagnetic permeability tensorµ(ω) and dielectric
constantε. The applied magnetic field may be either normal to the film, alongz (Faraday
geometry) or in plane (Voigt geometry). Partially reflecting mirrors M1 and M2 are included
in the calculation. The rf magnetic field in the incident beam is writtenhi and in a linear
calculation the other beam magnitudes are proportional tohi , as indicated.

We start with a ferromagnet in the Faraday geometry. The derivation of the linear
magnetic susceptibilityχ(ω) and the resulting permeabilityµ = I+χ is standard [19] and
χ is diagonalized by the transformationsm± = mx ± imy andh± = hx ± ihy : m± = χ±h±
with

χ± = ωm ± i0

(ω0− ωm)± ω ± i0(ω0/ωm − 1)
. (1)
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Figure 1. Magnetic Fabry–Ṕerot interferometer with axes and notation to be used.

Here0 is the coefficient of a Landau–Lifshitz damping term−0M × (M ×H)/M2
S in the

equation of motion forM. The frequencies are defined byω0 = γH0 andωm = γMS , where
H0 andMS are the static field and static magnetization, and demagnetization is included by
the replacementω0→ ω0− ωm compared with the standard form. It follows from (1) that
the propagating eigenmodes are the two states of circular polarization. It will be convenient
here to use the convention that the sign of the polarization is defined by the direction of
rotation with respect to the applied magnetic field. It should be noticed that this is different
from the standard optics definition, in which the sign is defined in terms of rotation looking
towards the source. One advantage of the definition we are using is that at the interfaces+
reflects to+ and− to −. The positions of the resonances inχ+ andχ− play an important
part in the Fabry–Ṕerot response. Neglecting damping, they are at

χ− : ω0 = ω + ωm
χ+ : ω0 = ωm − ω ω < ωm

for field sweep.
Since the sign of the circular polarization (as we are defining it) is preserved both

on reflection and transmission at an interface and in propagation through the magnetic
medium, the standard analysis for an isotropic medium may be applied as long as the
results are applied for the eigenstatesm±. The most convenient formulation [17] is found
by expressing the outgoing waves at each interface in terms of the incoming waves. Thus
at the upper interface

a = τ12+ ρ21b (2)

r = ρ12+ τ21b (3)

where τij and ρij are the complex amplitude transmission and reflection coefficients for
radiation incident in mediumi on the interface with mediumj . Likewise at the lower
interface

t = τ23aδ (4)

bδ−1 = ρ23aδ (5)
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where δ = exp(ikL) is the phase shift in propagation across the film andk is the wave
number given byk2 = (1+ χ)εω2/c2 whereε is the dielectric constant of the film. The
reflection and transmission amplitudes as well asδ andk all carry superscript+ or −, left
out of the above equations for ease of notation. Solution of (2)–(5) is straightforward and
leads to

t = τ12τ23δ

1− ρ21ρ23δ2
(6)

r = ρ12+ τ12τ21ρ23δ
2

1− ρ21ρ23δ2
(7)

with superscripts± implied on all quantities.
We now state expressions for the single-interface coefficients including the effect of a

partial mirror. We represent the mirror as a metal of conductivityσM and negative dielectric
constantεM , with thicknessd much less than the optical wavelength so that theH boundary
condition is1H‖ = d(σM − iωεM)E‖. It follows that

τij = 2ki
ki + kj + α (8)

ρij = ki − kj − α
ki + kj + α (9)

whereα = d(σM− iωε0εM)ωµ0 is the mirror term andki is the wave number. In numerical
illustrations we taked → 0 andσM , εM → ∞ with the products finite and we generally
chooseσMd = 0, non-dissipative mirrors.

The above results also hold for the Voigt geometry,H0 in the plane of the film, say
along y in figure 1. The bulk eigenmodes are then the plane polarizations, withh along
x coupled to the magnetic resonances andh alongy uncoupled. For the former, the wave
numberkV in the medium is given byk2

V = εµV ω2/c2 whereµV is the Voigt permeability.
With damping terms omitted for simplicity

µV = (ω0+ ωm)2− ω2

ω2
0 − ω2+ ωmω0

. (10)

With obvious substitutions ofµV andkV the optical formalism continues to apply.
The formal results apply for antiferromagnets although it should be noted that in general

the form ofµ(ω) then depends on the angle between the applied field and the ordering
direction [20–22]. In the uniaxial antiferromagnets MnF2 and FeF2 ordering in the absence
of a field is along the tetragonalc axis and for a static field applied in the same direction
µ± = µ1∓ µ2, with [23]

µ1 = 1+ γ 2HAMS(Y
+ + Y−) (11)

µ2 = γ 2HAMS(Y
+ − Y−) (12)

whereHA is the anisotropy field andMS the equilibrium sublattice magnetization. The
factorsY+ andY− are given byY± = [ω2

r−(ω±γH0)
2]−1 andωr is the resonant frequency

γ (2HAHE + H 2
A)

1/2 whereHE is the exchange field. Becauseµ takes the standard form
the results (6)–(9) apply first forc axis and field both normal to the mirrors and second
for c axis and field both parallel to the mirrors. For the former case there is of course no
correction for demagnetization since the net magnetization of the antiferromagnet is zero.
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3. Numerical results and discussion

We illustrate our results with graphs of transmission coefficientsT ± = |t±|2 first for a
1 cm film of the insulating ferromagnet YIG and second for a 1 mm film of theinsulating
antiferromagnet FeF2; the external medium is taken as air. The material parameters for YIG
are ε = 15.4, MS = 1750 Gauss and we assume0 = 0.01γMS while for FeF2 ε = 5.5,
HE = 53.3 T, HA = 19.7 T and we take0 = 10−4γMS , as found in reflectivity from
a good-quality sample [21, 22]. The mirrors are taken as non-absorbing (σM = 0). To

(a)

(b)

Figure 2. Magnetic-field dependence at frequencyω = 0.5ωm of Faraday-geometry transmission
coefficientsT − (——) andT + (– – –) of a 1 cm YIG filmwith mirror reflectivity (a)R = 0.353
and (b)R = 0.6.
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characterize the mirror we quote a ‘reflectivity’R which is the single-interface reflectivity
at the resonance frequencyω0 or ωr due to the mirror and the dielectric constant alone, i.e.
with µ set equal to the unit tensor.

In order to make comparison with standard optical results we have computed graphs of
transmission versus frequency for YIG in a perpendicular field [18] but the curves are not
shown here. The main features are these. Fringes are present in both+ and− polarization
and they become much sharper when the mirror reflectivityR is increased. The transmission
drops to zero in an interval around the resonance frequency because of resonant absorption.
In all cases the transmission approaches unity at low frequency; this is the standard result
for a film of thickness much less than the optical wavelength [24].

Calculated field-scan transmissivities for YIG in a perpendicular field are shown in
figure 2 for frequencyω = 0.5ωm. As noted in section 2, the resonant fields are 0.5ωm for
T + and 1.5ωm for T −. A loss in transmission due to absorption in the resonant region in
either case is clearly seen and away from resonance there are typical Fabry–Pérot fringes.
Comparison of figures 2(a) and (b) shows the striking effect of the inclusion of mirrors in
bringing out additional structure in the curves.

As mentioned, the formalism applies for a ferromagnet in the Voigt configuration
(parallel field) and some calculated transmission curves for the plane polarization that
couples to the magnetic resonance are shown in figure 3. For a field scan, it follows
from (10) that the resonant field is given byω0 = [(ω2

m + 4ω2)1/2 − ωm]/2 which for
figure 3 givesH0/MS = 0.212. Resonant absorption means that the transmission is near
zero around this field value. Away from resonance, it is seen that as in figure 2 the mirror
reflectivity has a considerable influence on transmission.

Figure 3. Calculated transmission curves for a 1 cm YIG film in the Voigt configuration (H0

andMS in plane with microwaveh field transverse toMS ). The curves are for field dependence
at frequencyω = 0.5ωm for mirror reflectivitiesR = 0.353 (——) andR = 0.6 (– – –).

Finally, we show in figure 4 calculated transmission curves for FeF2 with the c axis
and applied field normal to the mirrors. For this case we show frequency scans since, as
remarked in section 1, for this part of the spectrum frequency scans are practical and a
considerable number of data of this kind have already been published. From an illustrative
point of view, moreover, frequency scans have the advantage of easier comparison with
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(a)

(b)

Figure 4. Calculated curves for frequency dependence of the transmission through a 1 mm FeF2
film with c axis and applied fieldH0 normal to the mirrors: (a) bothT + andT − for H0 = 0
and no mirrors, (b) bothT + andT − for H0 = 0 andR = 0.6, (c) T + (——) andT − (– – –)
for H0 = 3 T and no mirrors, (d)T + (——) andT − (– – –) forH0 = 3 T andR = 0.6.

the optics literature. The reasons for the general structure of the curves in figure 4 are
clear from well known properties of the permeability of (11) and (12). The resonances are
very narrow because of the small value of the numeratorγ 2HAMS ; typically the resonant
linewidth is of the order of 0.1 cm−1 or less [21]. The factorsY+ and Y− are equal in
zero field; consequently in that case the optical properties are isotropic withT + and T −

equal, as shown in figure 4(a) and (b). The zero-field transmission drops to zero as a result
of absorption in a narrow interval around resonance. Away from resonance figure 4(a)
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(c)

(d)

Figure 4. (Continued)

and (b) shows typical Fabry–Pérot fringes resulting from optical standing waves given by
1k = π/L. The fringe spacings are fairly uniform but it can be seen that the spacing in
frequency becomes closer near resonance since1ω = (dω/ dk)1k and dω/ dk is relatively
small on either side of resonance. Away from the narrow resonance region regular fringes
are seen and comparison between figure 4(a) and (b) shows how these are sharpened by
the inclusion of mirrors. IncreasingR increases the finesseF = πR1/2/(1− R) of the
Fabry–Ṕerot etalon and away from resonance the comparison between figure 4(a) and (b) is
similar to that found in many optics texts in a discussion of the importance of the finesse.

In non-zero field the difference betweenY+ andY− is a standard Zeeman splitting as
seen clearly in reflection experiments [21]. The transmissionsT + andT − show the same
splitting with behaviour in the separate resonance regions similar to that of the zero-field
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curves. Although the width of the resonances themselves is narrow it is seen that substantial
differences betweenT + andT − persist over a substantial frequency range, in fact of order
20 cm−1 on either side of the zero-field resonance. The spacing between transmission peaks
is approximately proportional to 1/L and the splitting betweenT + andT − is proportional
to H0. By suitable choice ofL andH0, therefore, it should be possible to ensure that
the maxima ofT + coincide with the minima ofT −. With small damping the maximum
transmission is very close to unity and the minimum is(1+ 4F2/π2)−1. The implication
of figure 4(d), therefore, is that with moderate or largeF and suitable choice ofL the
antiferromagnetic Fabry–Pérot interferometer can serve as a circular polarizer, tunable by
the magnetic field.

The formalism here applies equally to the antiferromagnet in the Voigt geometry with
c axis and field in plane. We have not computed transmission curves for this case but
since the eigenmodes are plane polarized it is to be expected that for this geometry the
Fabry–Ṕerot interferometer is a field-tunable plane polarizer.

4. Conclusions

We have given a full account of the linear properties of the gyromagnetic Fabry–Pérot
resonator without exchange. For either the ferromagnet or the antiferromagnet with field
normal to the mirrors the eigenmodes are the circular polarization states and we have
therefore expressed the results in terms of these. For unpolarized incident radiation, figure 4
shows that the Fabry–Pérot interferometer can act as a tunable circular polarizer and the
inclusion of partially reflecting mirrors can make the polarization nearly 100%.

As mentioned in section 1, Fabry–Pérot fringes of the kind discussed here were observed
by Sanderset al [7] in normal-incidence transmission through a 786µm FeF2 sample.
They used an unpolarized incident beam of fixed frequency and they show magnetic-field
fringes over a frequency range that is sufficiently wide for theT + and T − fringes to be
identical except presumably in narrow intervals near resonance. Their theoretical discussion
is essentially identical to ours.

Comparison may be made between our results and those of Lalov and Miteva [9] and
Lalov and Georgieva [10] on the optically active Fabry–Pérot interferometer: the former
paper is for cases when absorption may be neglected while the latter includes absorption.
Like us, Lalov and Miteva concentrate on the polarization properties of the reflected and
transmitted light and in particular they emphasize the existence of a reflected beam of
opposite polarization to the incident beam. The second paper considers the modification
of the results by non-resonant absorption. Both these papers deal with a general angle of
incidence whereas we have restricted our discussion to normal incidence. It is known [25]
that for general propagation direction in a bulk ferromagnet the propagating eigenmodes
are elliptically polarized and we believe that our formalism could be extended to oblique
incidence without too much difficulty provided the problem is handled in terms of the
eigenmodes.

For both ferromagnets and antiferromagnets the equations of motion from whichµ(ω) is
derived may be extended to include terms inD∇2m arising from the exchange interaction.
When these are included, the propagation equation for the bulk material becomes a quadratic
in k2 with solutionsk0 andks say which at most frequencies are of a very different magnitude
and correspond, loosely, to optical and spin waves. The extension of the formalism to
include these spin waves will be given in a subsequent paper [1].

The nonlinear properties of the ordinary Fabry–Pérot interferometer have been a matter
of considerable interest [26, 27]. The permeabilities that we have used are derived by
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linearizing the equations of motion for the magnetization terms. It is possible, however, to
retain nonlinear terms [28]. One of the motivations of the present work has been to survey
the results of the linear theory so as to have a clear basis for discussion of the nonlinear
magnetic Fabry–Ṕerot interferometer, which we believe is an accessible problem.
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